Jaringan Laboratorium Medis

Vol. 5 No. 2 (2023): November 2023
Original Articles

Primer Design for Detection of The Diphtheria Toxin Repressor (dtxR) Gene as a Biomarker for Corynebacterium Diphtheriae Bacteria using In Silico PCR

Hilari Rio Rosa Nastiti
Poltekkes Kemenkes Semarang
Rachmad Bayu Kuncara
Poltekkes Kemenkes Semarang

Published 2023-12-11


  • Diphtheria,
  • Corynebacterium Diphtheriae,
  • DNA biomarkers,
  • Primary design,
  • dtxR

How to Cite

Primer Design for Detection of The Diphtheria Toxin Repressor (dtxR) Gene as a Biomarker for Corynebacterium Diphtheriae Bacteria using In Silico PCR. (2023). Jaringan Laboratorium Medis, 5(2), 136-143. https://doi.org/10.31983/jlm.v5i2.10588



If it doesn't Appear, click here

PlumX Metrics

Impact Factor

or, Visit on here


Corynebacterium diphtheriae is the bacteria that causes diphtheria. The virulence factor of C. diphtheriae comes from the bacteria's ability to produce bacterial toxins. Toxin production is regulated by a set of genes called tox/dtx genes and is regulated by the dtxR gene. The aim of this study was to design primers used to evaluate the dtxR gene using bacterial DNA sequences. This research is experimental research with a literature study approach using the In silico Polymerase Chain Reaction (PCR), NCBI (National Center for Biotechnology Information), Primer3Plus, and Oligo Calculator applications. The sample obtained from genbank NCBI was C. diphtheriae dtxR gene M80337.1. In silico PCR examination was carried out using newly designed primers from Primer3Plus with 50 genomic DNA of Corynebacterium spp. taken from the In silico PCR database. The dtxR primer pair: '5-ACAGTTAGCCAAACCGTTGC-3' and 5'-TGCGTTCAACTTCGTCACTC-3' can produce a single DNA amplicon measuring 226 bp specifically for C. diphtheria types and no amplicon bands were generated from other Corynebacterium genomes. Based on the study results, this pair of specific primers can be used for in vitro PCR testing and can be used to develop rapid detection of diphtheria.


Download data is not yet available.


  1. Alsamman, A. M., Ibrahim, S. D., & Hamwieh, A. (2019). KASPspoon: an in vitro and in silico PCR analysis tool for high-throughput SNP genotyping. Bioinformatics, 35(17), 3187–3190. https://doi.org/https://doi.org/10.1093/bioinformatics/btz004
  2. Dewi, R., Dewi, V., Yowani, S., & Yustiantara, P. (2018). Desain Primer untuk Amplifikasi Regio Promoter Gen inh A Isolat P016 Multidrug Resistance Mycobacterium tuberculosis dengan Metode Polymerase Chain Reaction. J Farm Udayana, 7(1), 34–39.
  3. Efstratiou, A., Engler, K. H., Mazurova, I. K., Glushkevich, T., Vuopio-Varkila, J., & Popovic, T. (2010). Current Approaches to the Laboratory Diagnosis of Diphtheria. The Journal of Infectious Diseases, 181(11), 46–48. https://doi.org/https://doi.org/10.1086/315552
  4. Ethica, S. N., Darmawati, S., Dewi, S. S., Nurrahman, & Sulistyaningtyas, A. R. (2020). Streptolysin encoding genes sagc and sagd as biomarkers of fish pathogen streptococcus iniae: An in silico study. Squalen Bulletin of Marine and Fisheries Postharvest and Biotechnology, 15(1), 31–39. https://doi.org/10.15578/squalen.v15i1.416
  5. Ethica, S. N., Hidayati, N., Fuad, H., Arham, C., Ariyadi, R., & Purwaningrum, E. (2020). Detection of rtxA Gene as a Biomarker of Seafood-Borne Pathogen Vibrio cholerae using In Silico PCR Assay. Squalen Bulletin of Marine and Fisheries Postharvest and Biotechnology, 15(2), 91–98. https://doi.org/10.15578/squalen.v15i2.417
  6. Ethica, S. N., Sulistyaningtyas, A. R., & Darmawati, S. (2019). In-silico specificity comparison between GMF-GMR and JMF-JMR primers for detecting moaC genes of food spoilage bacteria pseudomonas spp. IOP Conference Series: Earth and Environmental Science, 292(1). https://doi.org/10.1088/1755-1315/292/1/012033
  7. Jessica, B., Oza, M. N., & Murphy, J. R. (1990). Molecular cloning Tox, and DNA sequence analysis of a diphtheria From, iron-dependent regulatory element (dtxR) Acad., Corynebacterium diphtheriae. Proceedings of the National Academy of Sciences, 87(5968–5972).
  8. Mohan, A., & Harikrishna, J. (2015). Biomarkers for the diagnosis of bacterial infections: in pursuit of the “Holy Grail.” Indian J Med Res, 141(3), 271. https://doi.org/doi: 10.4103/0971-5916.156551.
  9. Nakao, Hi., & Popovic, T. (1997). Development of a Direct PCR Assay for Detection of the Diphtheria Toxin Gene. Journal of Clinical Microbiology, 35(7), 1651–1655.
  10. Rizki, A., Sariadji, K., Malik, A., & Karuniawati, A. (2013). Direct Polymerase Chain Reaction : Sebuah Alternatif Metode Diagnostik Difteri Secara Cepat , Mudah dan Hemat. Makara Seri Kesehatan, 7, 88–94.
  11. Ruslan, K., Lee, D., & Schulman, A. H. (2011). Java web tools for PCR, in silico PCR, and oligonucleotide assembly and analysis. Genomics, 98(137–144).
  12. Septiari, I., Yowani, P., & Yustiantara, S. (2015). Analisis Primer untuk Amplifikasi Promoter inhA Multidrug Resistance Tuberculosis (MDR-TB) dengan Metode Polymerase Chain Reaction (PCR). J Kim, 9(1), 117–123.
  13. Sunarno, Kambang Sariadji, & Holly Arif Wibowo. (2013). Potensi Gen dtx dan dtxR Sebagai Marker Untuk Deteksi Dan Pemeriksaan Toksigenisitas Corynebacterium diphtheriae. Buletin Penelitian Kesehatan, 41(1), 1–10.
  14. Sunarno, Mulyastuti, Y., Puspandari, N., & Sariadji, K. (2017). DNA Sequence Analysis of dtxR Gene (Partial) of Corynebacterium diphtheriae Causing Diphtheria in Jawa and Kalimantan Islands, Indonesia. Indones Biomed J., 9(2), 91–98. https://doi.org/10.18585/inabj.v9i2.268
  15. Sunarno, S., Muna, F., Fitri, N., Malik, A., Karuniawati, A., & Soebandrio, A. (2014). Metode Cepat Ekstraksi Dna Corynebacterium diphtheriae Quick Method To Extract Corynebacterium Diphterinae. Indonesian Bulletin of Health Research, 42(2), 85–92.
  16. Sunarno, & Sariadji, K. (2016). Perbandingan Pemeriksaan Toksigenisitas secara Genotip dan Fenotip pada Beberapa Isolat Corynebacterium diphtheriae Penyebab Difteri di Indonesia. Biotek Medisiana Indonesia, 5(2), 143–151.
  17. Suparman, Ahmad, H., & Ahmad, Z. (2016). Desain Primer PCR Secara in silico untuk Amplifikasi Gen COI pada Kupu-kupu Papilio ulysses Linnaeus dari Pulau Bacan. J Pendidik Mat dan IPA, 7(1), 14–25.
  18. Suryadi, P., Ratnayani, K., & Yowani, S. (2014). Desain Primer untuk Amplifikasi Gen katG Multidrug Resistance Tuberculosis (MDR-TB) dengan Metode Polymerase Chain Reaction (PCR). J Kim, 8(1), 77–82.